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Abstract

The laminar, incompressible, hydrodynamically fully developed and thermally developed and developing flow is
studied in straight elliptic ducts with aspect ratio ¢* varying from 0.25 to 0.99 (which is an almost circular duct). The
duct wall is subjected successively to constant temperature, to circumferential uniform and axially linearly or expo-
nentially varying temperature. Numerical results obtained with the ADI scheme indicate that the friction factor in-
creases as aspect ratio a* decreases. In the thermally developing flow a high Nusselt number decreases as a* decreases. In
the thermally developed limit as a* decreases, the Nusselt number increases for small axial wall temperature distri-
butions, while decreases for large axial wall temperature values. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The use of ducts with elliptic cross-section increases
in the modern engineering heat transfer applications
such as compact heat exchangers, flow passages, etc. The
main advantage of using elliptic ducts than circular
ducts is the increase of heat transfer coefficient. On the
other hand, for the improvement of the performance of
these exchangers, the accurate study of the thermally
developing flow near the entrance region is essential.

The problem of flow into straight ducts of elliptic
cross-section has received much attention during the
past years, either for hydrodynamically developing-de-
veloped flow or thermally developing-developed heat
transfer, in a wide range of thermal boundary conditions
of the form T, = constant (constant wall temperature
circumferentially and axially) or of the form A1 (axial
uniform wall heat flux with peripherally uniform wall
temperature), etc.

Many experimental, analytical and numerical pro-
cedures have been proposed in the literature (for a brief
description [1,2]).
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For the procedures using numerical methods (such as
finite differences, finite volumes and finite elements), the
discretization of the elliptical computational domain has
been made adopting a rectangular grid [3] or developing
a numerical generated boundary fitted coordinate [4].
On the other hand, an elliptical-cylindrical coordinate
system has been used recently by Velusamy and Garg
[5], for the study of hydrodynamically developed and
thermally developing flow with thermal boundary con-
ditions 7,, and A1 for ducts of semi-elliptic cross-section,
as well as in [6], for the study of the same problem in
vertical elliptic ducts including buoyancy forces and H1
thermal boundary condition. A similar coordinate sys-
tem has been used by Saatjian et al. [7] for the study of
the flow between porous confocal elliptic duct and by
Velusamy and Garg [8,9], for the study of the hydro-
dynamically developing flow without thermal effects.
For all the above numerical procedures (and also for
experimental and analytical), the wall temperature has
been considered as constant in the axial direction of the
straight pipe.

Javeri [10], using a variational Galerkin—Kantoro-
wich method, analyzes the hydrodynamically developed
and thermally developing flow and heat transfer, into
straight ducts of square, circular and elliptic cross-sec-
tion, for the thermal boundary condition of linearly
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Nomenclature

A source term in Egs. (7a)—(7¢)
B axial conduction term in Eqs. (7a)—(7c)

a semi-major axis

a* aspect ratio of the elliptic duct axis (= b/a)

b semi-minor axis of the elliptic cross-section

¢ eccentricity (nondimensional) (= (1 —a*2)'/?)

Ci coefficient in the LAWT case, with dimensions
of [TIIL™"]

C coefficient in the EAWT case, with dimensions
of [L7!]

C, dimensionless coefficient in Eq. (7¢)
(= aRePrC,)

C; coefficient in the EAWT case, with dimensions
of [T]

(0N heat capacity of the fluid

D, hydraulic diameter of the elliptic
cross-section, Eq. (6)

E cross-section area

f friction number

H (= sinh? ¢ + sin n)

k heat conduction coefficient of the fluid

Ly, thermal entrance length

[L™'] dimensions of inverse distance

n component of elliptic-orthogonal coordinate

system, Fig. 1

ny, n; minimum and maximum values of coordinate
n (}’lo = 0,}’[1 = TE/Z)

Nu local Nusselt number, Egs. (11) and (14)

Nu,  mean Nusselt number, Eq. (15)

Nu,  mean Nusselt number defined from energy
balance, Eq. (16)

P pressure (dimensionfull)

Pe Peclet number (= RePr)

Pr Prandtl number (= pC,/k)

Re Reynolds number (= pwy,Dy /1)

axial coordinate (dimensionfull)

axial coordinate, dimensionless (= s/(aRePr))

dimensionfull temperature

dimensionless temperature of the fluid

(=(T-10)/(Tw — Tv))

temperature of the duct wall (dimensionfull)

dimensionless temperature of the duct wall

(=D

To temperature of the duct inlet (dimensionfull)

T dimensionless temperature of the duct inlet
(=0)

Ty dimensionless bulk (mean) fluid temperature,
Eq. (13)

[T dimensions of temperature T

t dimensionfull time

t dimensionless time (= #u/(pa?))

w axial velocity (dimensionfull)

dimensionless axial velocity (= —uw/

(@*(dP/ds)))

Wi mean axial velocity (dimensionfull)

Wm dimensionless mean axial velocity, Eq. (5)

ﬂlﬂ vl «

S

o dimensionless distance measured along the
semi-minor axis from the center of the ellipse
to the wall

Greek symbols

€ parameter in Eq. (17)

I viscosity of the fluid

¢ component of the elliptic coordinate system,
Fig. 1

&y, ¢ minimum and maximum values of coordinate
¢ (& =0,¢ = tanh™' (b/a))

| perimeter of the ellipse

o density of the fluid

Subscripts
w value at the wall
m mean value

varying wall temperature in the axial direction (LAWT).
Also, Abdel-Wahed et al. [11] have investigated exper-
imentally the simultaneously developing hydrodynamic
and thermal flow in straight elliptic ducts of aspect ratio
0.5 with the boundary condition of LAWT. Recently,
the effect of the last boundary condition has been also
investigated numerically by Rindt et al. [12] for the case
of a curved duct with circular cross-section.

The present paper analyzes the problem of laminar,
incompressible, hydrodynamically fully developed and
thermally developing flow into straight ducts of elliptic
cross-section with various aspect ratios b/a = 0.8, 0.5,
0.25, including the nearly circular cross-section with
b/a =0.99 = 1. Numerical results are obtained for the
investigation of the flow and heat transfer characteristics

using an applicable elliptical-cylindrical coordinate
system for the exact application of the boundary con-
dition at the wall. Accordingly, the equations of mo-
mentum, energy and other parameters of the problem
(Nu, fRe, etc.) are formulated in the adopted coordinate
system. The duct wall is subjected successively to the
following three thermal boundary conditions: peripher-
ally constant as well as linearly and exponentially
varying wall temperature in the axial direction, denoted
as LAWT and EAWT, respectively. Interesting results
for all cases are presented while the EAWT boundary
condition is investigated for the first time. The chosen
boundary conditions are applied in counter flow heat
exchangers and solar domestic heat water systems.
Linear and weekly nonlinear axial wall temperature
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variations are observed in various situations of the
above systems.

The effect of axial conduction is neglected consider-
ing thermal flow with large Peclet number. The effect of
buoyancy forces is also neglected because we consider
small temperature differences between the wall and the
core region of a fluid having large Reynolds number.
Fluid properties assume to be constant and independent
of temperature.

2. Analysis

We consider the laminar flow of incompressible fluid
entering a straight duct of elliptical cross-section. As-
suming negligible body forces we consider a hydrody-
namically fully developed and thermally developing flow
neglecting the momentum diffusion in the axial direc-
tion. For the study of flow and heat transfer character-
istics, we consider the elliptical orthogonal coordinate
system (s, &, n), shown in Fig. 1.The component s is the
axial coordinate and &, n are the coordinates in the
plane of the cross-section. The surfaces £ = constant are
the confocal elliptic cylinders

xZ y2

(cosn)? - (sinn)’

=1 (1)

while the surfaces n = constant are the hyperbolic cyl-
inders

x2 yz
=1 b
(cosh &)’ " (sinh &) 2)

The nondimensionalized equations of motion and en-
ergy, transformed into the above coordinate systems can
be expressed as:

Axial momentum equation

ow o*w Ow

H— = — +—— + *H,.
& 0B tazte (3)

n, E1 >‘
€

Eo Do

Fig. 1. Elliptical-cylindrical coordinate system.

Energy equation

W oT FT T
2Hgﬁ 2Ny — +B, 4
. Wm \ Dy ) \ 05 * agz + on? + @

where T = (T — Ty)/(Ty — Tp).
The mean axial velocity of the flow wy, is given by

Aa? — 1 ny &
. :M/ / W, dEdn, (5)
Ta ny J&

where c is the eccentricity of the elliptic cross-section, a*
is the aspect ratio of the elliptic duct axis, a the semi-
major axis and Dy, the hydraulic diameter

411 1 172
Dh:7:2n<§(a2+b2)) and

G ©

The terms A and B depend on the imposed thermal
boundary conditions.
For the dimensional wall temperature boundary
condition T, = constant
-
A=0 and B:;ZGT{. (7a)
(RePr)” 05

For the dimensional LAWT case with T, — T, = C\s

T 1 o*T 20T
A=— and = 3 [ +=- } (7b)
s (RePr) 0s* 505
For the dimensional EAWT case with
Ty — To = Csexp(Chs) = C3exp(C»3)
A=TC, and
1 o*T oT (7c)
= +2C,—+ C3T }
(RePr)? {6 o5

where C, = aRePrC}.

The constants C;, C, and C; have dimensions of
[TIL~1, [L7'] and [T], respectively. However the con-
stants C; and C; do not appear in the final equations.

Numerical studies indicate that, for T, = constant
and for values of the Peclet number Pe > 50 [1], the term
B, representing the thermal axial conduction, via the
relation (7a), can be neglected. Similar results apply for
the LAWT case where B is given by (7a). In the EAWT
case, B can be neglected only if the coefficients (RePr) >,
2Cy(RePr)> and C2(RePr)* are of the same neglected
magnitude. The term B can be neglected for Pe > 50
when C, =1, Pe > 500 when C, =10 and Pe > 5000
when C, = 100.

It is observed that the application of the nonlinear
EAWT boundary condition reveals the conditions under
which the effects of the axial conduction may be
neglected.
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In the present study the thermal axial conduction is
neglected for all cases.

The imposed dimensional velocity and thermal
boundary conditions are expressed in the following
nondimensional form:

W =0 along ¢ = & = tanh™' (¢*) for all n, (8a)
T=Ty=0ats5=0 forall ¢and n, (8b)
T=Ty,=1laté=¢, foralln. (8c)

Owing to the symmetry of the flow, only a quarter of the
elliptic cross-section is used in the numerical procedure.
Accordingly, the following symmetry boundary con-
ditions are needed:

ow oT L
a:a:Oalongg—gl—O for all n, (9a)
ow oT

a—éfa—éfodlongnfnofo for all &, (9b)
ow oT T
E—E—Oalongn—nl—i for all ¢&. (9¢)

Physical quantities of primary interest are the local
friction factor and the local Nusselt number, which are
defined, respectively, by

—(dP/ds)D
Nu:h%, (11)

where / is the local heat transfer coefficient.

The characteristic quantity of fluid flow fRe ex-
pressed in terms of hydraulic diameter and nondimen-
sional quantities takes the form

fRe = (D> ! (12)

a ) 2wy’

where Re is the Reynolds number.
Considering the bulk (mean) fluid temperature of
flow which is given by

I J3 WTH, d¢dn
[ [2 wH, dE dn

<0

(13)

m

the local Nusselt number Nu and the mean local Nu, are
given by the expressions:

1 \(D T

Nu = _ —h HS‘/zé—y 7 (14)
1 -Th a 0¢ /ey,

- ,:)' NuH,dn 5

N (1

no

Another expression for the mean Nusselt number can be
obtained from the consideration of the energy balance
over the entire cross-section and is given by the formula:

— 11 Dy\ dT,
N”Z—‘z<1_7m)(7)ﬁ- (16)

3. Solution

The set of uncoupled Egs. (3) and (4) for the cases
(7a)—(7c) subjected to the boundary conditions (8a)—(8c)
and (92)—(9¢) is solved numerically employing the iter-
ative finite difference pseudotransient alternating direc-
tion implicit method (ADI). For the discretization of
these equations, three-point central differences are used
for the second-order derivatives and two-point forward
differences for the first-order derivatives. So, an al-
gebraic system of equations is obtained for each variable
which is solved by the well-known tridiagonal matrix
algorithm (TDMA).

Consequently, the friction factor product fRe and the
local and mean Nusselt numbers are calculated using
Egs. (12), and (15), and (16), respectively.

Convergence of the iteration procedure for both the
momentum and energy equations was achieved when the
following criterion was satisfied:

N\ 2
> <g, (17)

91 1
(% > B —Beny”

&=&y n=ng
where B(¢, n) represents the variable w or T, respectively,
m is the iteration number, N is the total number of grid
points and & = 107,

The integrals of mean velocity Eq. (5), bulk fluid
temperature Eq. (13) and mean Nusselt numbers re-
lations (15) and (16) are calculated employing the
SIMPSON rule. Accurate results for the Eq. (14)—(16)
are obtained using three-point forward differences for the
first-order derivatives. Considering the symmetry of the
flow, as we referred before, only a quarter of the whole
cross-section was used in the numerical computation.

Uniform grid pattern of 40 x 40 points is employed
for elliptic cross-sections with aspect ratios a* = 0.8, 0.5
and 0.25. For the circular cross-section with a* =
0.99 = 1, a 50 x 50 uniform grid pattern is used. All the
successive calculations of the present paper are based on
these grid sizes. To assure the accuracy of the numerical
results, numerical tests have been made with different
grids, in order to determine the effect of the grid size in
the numerical results: so, for the cases of a* = 0.8, 0.5
and 0.25 a uniform grid of 30 x 30 points, and for
a* =099 2~=1 a grid of 40 x 40 points, have been also
used.

In Table 1 temperature and velocity results are pre-
sented along the minor axis for the case of b/a = 0.25,
using a coarse (30 x 30) and a fine (40 x 40) grid. The
mean deviations of the results obtained for the velocity
and temperature with the two grids are about 0.20% and
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Table 1
Temperature and velocity profiles as functions of the distance y,, measured along the semi-minor axis from the center of the ellipse to
the wall
Temperature 7 () Axial velocity w()
T 30 x 30 grid 40 x 40 grid Deviation b 30 x 30 grid 40 x 40 grid Deviation
(%) ()
0 0.02409 0.02420 0.454 0 0.16293 0.15447 5.480
0.02473 0.02393 0.02402 0.376 0.02473 0.17184 0.16425 4.420
0.04948 0.02331 0.02338 0.300 0.04948 0.20162 0.19483 3.370
0.07426 0.02221 0.02227 0.270 0.07426 0.25289 0.24686 2.384
0.09909 0.02063 0.02068 0.242 0.09909 0.32417 0.31889 1.628
0.12399 0.01856 0.01859 0.161 0.12399 0.41307 0.40859 1.084
0.14896 0.01597 0.01599 0.125 0.14896 0.51638 0.51275 0.703
0.17404 0.01284 0.01286 0.155 0.17404 0.63034 0.62759 0.436
0.19922 0.00916 0.00917 0.109 0.19922 0.75103 0.74920 0.244
0.22454 0.00489 0.00489 0 0.22454 0.87504 0.87416 0.101
0.25 0 0 0 0.25 1 1 0

1.80%, respectively. Similar mean deviations are ob-
served for the results obtained with the other aspect
ratios. The mean deviation between coarse and fine grids
for each case of aspect ratio is less than 0.5% for fRe and
less than 1.9% for the Nusselt number.

The time step A¢ in the momentum equation depends
on the plane grid size (i.e., A, An steps) and gradually
on the parameter ¢ of the elliptic cross-section. Gener-
ally, At is between 10~* and 1.8 x 107>, Especially, for
a*=0.99, Ar=0.0001 for a*=0.8, Ar=0.0002 for
a* = 0.5, At = 0.00005 and for a* = 0.25, At = 0.000018.
Along the axial direction a fine grid of size As = 107°
was used near the duct entrance to avoid numerical
fluctuations, especially for lower grid sizes. As the flow
becomes gradually thermally fully developed, in quite a
long axial position from the entrance of the duct, an
axial step size As of about 10~* is considered as satis-
factory.

All the present results for the Nusselt number are
based on Eq. (15). The maximum deviation of the
Nusselt numbers given by Egs. (15) and (16) is less than
2%. This fact ensures the accuracy of numerical results
too.

As we stated before, the discretization of the second-
order derivatives in momentum and energy equation is
based on three-point finite differences. The use of higher-
order discretization, such as five-point finite differences,
leads to five-diagonal algebraic systems. Although five-
point discretization is more accurate than that of three-

Table 2

points, the maximum difference in the results of friction
factor and Nusselt number for the two cases was found
to be less than 1%. Consequently, there is no reason to
use five-point instead of three-point discretization in the
second-order derivatives.

4. Accuracy

In order to validate the accuracy of the numerical
results, we have performed computations on the well-
studied problem of thermally developed flow in straight
elliptic duct with constant wall temperature T, =
constant. The obtained results for the friction factor and
the Nusselt number for the values of aspect ratio
a*=0.99, 0.8, 0.5 and 0.25 are shown in Table 2 along
with the analytical results of Schenk and Han [13].
Comparison of the results of Table 2 indicates very close
agreement. The maximum deviation is less than 0.434%
for fRe and less than 1.871% for Nusselt number, while
the mean deviation is 0.28% and 0.69%, respectively. It
is observed that as o* decreases the increase of Nu, is
very small.

For the thermally developing flow, the development
of the Nusselt number, as a function of the axial distance
s from the entrance of the duct, under the thermal
boundary conditions T, = constant and LAWT, is
shown in Tables 3 and 4, respectively. In Table 3 the
analytical results of [14] are also presented. It is observed

Mean Nusselt number Nu; and friction factor product fRe for thermally developed flow with T, = constant

a*=b/a Nu, (present) Nu [13] Deviation Nu fRe (present) fRe [13] Deviation fRe
(o) (%)

1 3.655 3.658 0.082 16.02 16.0 0.125

0.8 3.694 3.669 0.681 16.255 16.317 0.380

0.5 3.672 3.742 1.871 16.896 16.823 0.434

0.25 3.692 3.687 0.136 18.258 18.29 0.175




30 V.D. Sakalis et al. | International Journal of Heat and Mass Transfer 45 (2002) 25-35

Table 3
Mean Nusselt number Nu; for thermally developing flow in
circular duct (b/a = 0.99) with T, = constant

5 Nu Nu, Difference
(analytical) [14] (present) (%)

0.001 12.80 13.3686 4.44

0.004 8.03 8.09398 0.796

0.01 6.00 6.00197 0.033

0.04 4.17 4.1629 0.17

0.08 3.77 3.7647 0.14

0.1 371 3.7078 0.06

0.2 3.66 3.6577 0.063

00 3.66 3.6577 0.063

that the deviation of the results for 5 = 0.001 is 4.44%
and the mean deviation for 5> 0.001 is about 0.19%.
This is due mainly to the large axial and transverse
temperature gradients in the vicinity of the entrance of
the flow. It is verified by the fact that for 5 = 0.001 the
deviation of the Nu; decreases for a finer grid of 80 x 80
to 2.3%, while it increases for a coarse grid of 40 x 40 to
5.46%. Similar behavior of the numerical results is pre-
sented in the relevant work of [15].

Similar results are presented in Table 4 for the as-
pect ratio numbers a* = 0.99, 0.8, 0.5, 0.25. The results
obtained by Javeri [10] using the Kantoriwich varia-
tional method are presented also in Table 4 only for
the case of circular duct. His results for elliptic ducts
cannot be compared with ours because of the different
nondimensional variables used. Comparing our results
with those of Javeri [10] for the circular duct, we ob-
serve a maximum deviation of about 36% in the posi-
tion 5 = 0.01. This deviation decreases as the distance s
increases and becomes 0.3% at 5 = 1. Considering the
very good agreement of our results with those of
Schenk et al. [13] and Kays and Crawford [14] pre-
sented in Tables 2 and 3, we conclude that the devia-
tion of Javeri’s results is mainly due to the omission of
higher order terms in his approximate solutions. Re-
cently, in the thermally developing region, similar in
order of magnitude differences have been observed by
Abdel-Wahed [11], where experimentally investigated
the problem of simultaneously hydrodynamical and
thermally developing flow in an elliptic duct of aspect
ratio 0.5, when the wall is subjected to LAWT
boundary condition. Unfortunately, their results can-
not be compared absolutely with ours, owing to dif-
ferent hydrodynamic flow considerations.

5. Results and discussion

Fig. 2 represents the variation of the axial velocity w
along the semi-minor axis of the elliptic duct for various
aspect ratios. For all aspect ratios, the parabolic char-
acter of the axial velocity is obvious.

Table 4

= CIS

Mean Nusselt number Nu; for thermally developing flow with T, — T,

Nuy b/a=0.8
(present)
19.874

15.506

11.295

Deviation

(%)

Nuy b/a=0.25
(present)
14.466

11.515

Nu b/a=0.25

[10]

Deviation

(%)

Nuy b/a=10.5

Nu b/a=0.5

[10]

Deviation

()

Nuy b/a=1
(present)
21.682
16.709
11.959

Nubja=1
[10]

(present)
17.441
13.754
10.153

26.402
25.482
22.860
19.502
15.395
10.469

24.325
23.450
20.954
17.749
13.814

5.1
22.6

22.847
21.579
18.419
14.748
10.763

0.001

0.002

8.651
7.110
6.02

35.1

0.005
0.01
0.02
0.05

0.1

8.989
7.257

8.170
6.695

36.2

9.405

30.1

1

7.518

5.701

5.153
4.830

5.404
4.857

9.113

8.0

5.813

7.093

4.998
44.633

8.018

6.921

11.5

5.026
4.602
4411

5.682
4.925

4.714

6.470

5.682 4.595

4.888

6.6

0.2

4.483

4.699

5.402
5.041

4.514
4.511

1.58
0.23
0.6

4.482

0.5

4.473

4.699

4.641

4.3938
4.3934

4.380

4473

4.699

4.880

1.03

4.511

4.558

4.364
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T T T T T T
0,25 |- b/a=0.5 4

0,20

0,15 |-

axial velocity W

0,10 -

0,05 -

0,00

i 1 1 | ! L
0,0 0.2 04 06 08 1,0

semi minor axis

Fig. 2. The axial velocity w along the semi-minor axis of the
elliptic duct for various aspect ratios.

The results for the friction factor in the hydrody-
namically fully developed flow through elliptical ducts
with various aspect ratios are presented in Table 2. It is
observed that, as the aspect ratio varies from 1 to 0.25
the friction factor increases about 13.5%. However, we
observe that in the case of fully developed thermal flow
with T, = constant for a* = 0.5, where the Nusselt
number reaches its maximum increase, about 2.3%, the
increase of the friction factor is restricted to about
5.14%.

From Table 4, it is observed that in the limiting case
of thermally fully developed flow (5> 1), under the
LAWT boundary condition, the mean Nusselt number
Nu, increases from 4.393 to 4.699, that is about 7%, as
the aspect ratio decreases from 1 to 0.25. Similarly, from
Table 5, it is observed that in the thermally fully devel-
oped flow (s = 1), under the EAWT boundary condition
with low values of C,, the Nu; increases as the aspect
ratio decreases from 1 to 0.25. In the vicinity of the
moderate value C, = 10 the Nu; fluctuates. However, as
C, increases to larger values, the above behavior of the
Nusselt number is reversed and decreases as the aspect
ratio decreases from 1 to 0.25 (this behavior is more
obvious in Fig. 13).

Results for Nu;, in the thermally developing flow, are
presented in Tables 3 and 4, for the boundary conditions
T, = constant and LAWT, respectively. From Table 4,
it is observed that near the entrance region, the decrease
of the aspect ratio yields the decrease of the Nusselt
number. Clearly, for the purpose of the heat transfer
enhancement it is better to use ducts with low values of
aspect ratio.

Tables 6 and 7 presents the thermal entrance length
Ly, for values of aspect ratio ¢* = 0.99, 0.8, 0.5, 0.25
under the LAWT and EAWT thermal boundary con-
ditions, respectively. The length Ly, is the axial position
where the local Nusselt number becomes 1.05 times the
value of the Nusselt number (that is 5% larger) in the
thermally fully developed flow [1]. For the case of

Table 5

59)

Cyexp(

Mean Nusselt number Nu; for thermally developing flow with 7, — Tj

Nuy b/a=0.25

G

Nuy b/a=10.5

G

Nuy b/a=0.8

Nuy b/a=1

7.188
6.879

C, =100
6.903

G

100

G

G

100

G

100 G =1 G

G

5.835 5.973

8.467
7.962
7.865

6.973
5.84

6.806
5.571

9.090
8.494
8.338
8.339
8.339
8.339

7.369
6.086

7.178
5.788
4.038

7.710 9.551

7.505
6.024
4.099

0.005
0.01
0.05

0.1

5.169
4.757

4.945

8.909
8.729
8.73
8.73
8.73

6.341

4.069

4.853

4.098
4.01

4.

4.832

4.943

4.103 4.972 6.905

4.781
4.781

7.867
7.867
7.867

4.996

4.910

3.888
4.468

4.987

3.887
4.461

6.875
6.875

5.072
5.072

5.145
5.145

67

5.063

5.143
5.143

4.67

5.063

4.468

4.461

31
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Table 6
Thermal entrance length Ly, with T,, — Ty = Cys

Ly b/a =099 (LAWT) Ly b/a =08 (LAWT)

Ly b/a=0.5 (LAWT)

Ly b/a = 0.25 (LAWT)

0.1948 0.1684

0.1277 0.0752

Table 7
Thermal entrance length Lth with 7,, — T) = C; exp(C)s)

Ly b/a =1 (EAWT) Ly b/a = 0.8 (EAWT)

Ly b/a=0.5 (EAWT)

L, b/a = 0.25 (EAWT)

G =1 G=10 C =100 C =1 G =10

C, =100 G, =1 G =10

G =100 C, =1 C =10 C, =100

0.0255 0.0215 0.0069 0.0219 0.0188 0.0068

0.0165 0.0146 0.0062 0.0093 0.0085 0.0046

LAWT boundary condition, it is observed that as the
aspect ratio varies from 0.99 to 0.25, the thermal en-
trance length L, decreases about 63%. In the case of
EAWT, for any value of aspect ratio, the thermal en-
trance length Ly, decreases as the parameter C, increases
(for example, when b/a = 0.5 Ly, decreases about 69% as
C, varies from 1 to 100). However, the interval of this
variation decreases as the aspect ratio decreases. For any
value of C,, the length Ly, decreases as the aspect ratio
decreases from 1 to 0.25.

The variations of Nu;, T, and T, in the case of
LAWT boundary condition, are shown in Figs. 3-7.
Fig. 3 shows that in the entrance region the increase
of the aspect ratio leads to increase of Nu,. Fig. 4
shows that the mean temperature of the fluid tends
to unity when the flow reaches the thermally fully
developed flow. Also, as the ratio decreases, the bulk
temperature tends more rapidly to unity following
lower profiles. Comparing the results of Figs. 3 and 4
with the corresponding ones obtained by Shah and
London [1], we conclude that the values of Nu, for
the thermally developed flow, under the LAWT and
H1 boundary conditions, are exactly the same for
each aspect ratio.

Results for Nu; and Ty, in the thermally developing
flow, under the EAWT boundary condition, are pre-
sented in Table 5 and Figs. 8-13. Table 5 presents the

50 T — rrr— . , .

a5 |
Tw-To=C1*s
40
35

30 bla=0.25

b/a=0.99

s/(aRePr)

Fig. 3. The mean Nusselt number Nu,(5) profiles for various
values of a* = 0.99, 0.8, 0.5, 0.25 in the LAWT case.
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Fig. 4. The bulk fluid temperature 7,,(5) profiles for various
values of a* = 0.99, 0.8, 0.5, 0.25 in the LAWT case.
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0.0 0,2 0,4 0,6 0,8 1,0
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Fig. 5. Temperature distribution 7 along the semi-minor axis
of the nearly circular duct (a* = 0.99) for various values of the
axial length 5 in the LAWT case.

mean Nusselt number as a function of 5, for the aspect
ratios a* =1, 0.8, 0.5, 0.25 and the parametric values
C, =1, 10 and 100. The behavior of Nu; is similar to
that presented in Table 4.

Figs. 8 and 9 represent the variation of the mean
Nusselt number against the axial position 5, for various
aspect ratios with C; = 1 and C, = 100, respectively. In
the entrance region the decrease of ratio a* causes the
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Fig. 6. Temperature distribution 7 along the semi-minor axis
of elliptic duct with a* = 0.5 for various values of the axial
length 5 in the LAWT case.
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Fig. 7. Temperature distribution T along the semi-minor axis
of elliptic duct with a* = 0.25 for various values of the axial
length 5 in the LAWT case.
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Fig. 8. The mean Nusselt number Nu,(5) profiles for various
values of a¢* in the EAWT case with C, = 1.
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Fig. 9. The mean Nusselt number Nu (5) for various values of
a* with C, = 100 in the EAWT case.
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Fig. 10. The mean Nusselt number Nu, (5) for various values of
C, when a* = 0.99 in the EAWT case.

30 .

x| Tw-To=C3*exp(C2 *s)
b/a=0.5

20 |-

s/(aRePr)

Fig. 11. The mean Nusselt number Nu (5) for various values of
C, when a* = 0.5 in the EAWT case.
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Fig. 12. The bulk fluid temperature T,,(5) for various values of
a in the EAWT case with C, = 1.
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Fig. 13. The mean Nusselt number Ny, in the thermal fully
developed region, as a function of the parameter C, in the
EAWT case, for various values of a*.

decrease of Nusselt number. This behavior is reversed in
the limit of fully developed thermal flow, for the cases of
small values of C,. In the thermally developed flow, for
moderate values of C, =2 10, the Nusselt number is
almost constant for the various aspect ratios, while for
large values of C, (see Fig. 13) the Nusselt number de-
creases.

Figs. 10 and 11 show the variation of Nusselt number
against the axial position 5 for the values of C, = 1, 10,
100 and aspect ratios 0.99 and 0.5, respectively. For any
given value of b/a, the increase of C, causes the increase
of Nusselt number, both in the entrance and the devel-
oped region. Also, for low values of C,, a ‘concave’
appears in the low part of the Nusselt number profile,
which is mainly due to a slight inversion of the behavior
of 0T /5.

The behavior of T,, as a function of 5 is shown in
Fig. 12. Comparing these results with those of Fig. 4,

we observe that 7, varies more sharply to its limiting

values in the region 5<0.2 in the EAWT case than the
corresponding one of LAWT. In both cases T,, increases
as a* increases.

Finally, Fig. 13 shows the variation of Nu; in the
thermally developed region under the EAWT condition,
as a function of the strength parameter C, for various
values of the ratio a*. As the aspect ratio decreases, Nu|
increases as C, decreases from C, = 7 to lower values
and decreases as C, increases from C, = 10 to larger
values.

6. Concluding remarks

As the aspect ratio of the elliptic duct a* decreases
from 0.99 to 0.25, the friction factor product fRe in-
creases. For the boundary condition 7, = constant, as
the aspect ratio decreases from 0.99 to about 0.5 the
Nusselt number increases and from a* = 0.5 to 0.25 the
Nusselt number decreases.

For the case of LAWT and in the region of fully
developed thermal flow, as the aspect ratio decreases
from 0.99 to 0.25 the Nusselt number increases at about
7%. In the entrance region, the decrease of aspect ratio
yields the decrease of Nusselt number.

In this case the thermal entrance length Ly, decreases
at about 63% as a* varies from 0.99 to 0.25.

From the results of the EAWT condition, it is con-
cluded that as the aspect ratio decreases, the Nusselt
number for small and moderate values of T, — Tj in-
creases, while for large values it decreases. Also, for any
value of C,, the thermal entrance length Ly, decreases as
aspect ratio varies from 0.99 to 0.25.

References

[1] R.K. Shah, A.L. London, Laminar Flow Forced Convec-
tion in Ducts, Academic Press, New York 1978 (Chapter
IX, pp. 247-252, Chapter II, p. 7).

[2] S. Kakac, R.K. Shah, W. Aung, Handbook of Single Phase
Convective Heat and Mass Transfer, Wiley, New York,
1988, pp. 63-68 (Chapter 3).

[3] M. Mahadevapa, V.R. Rao, M.K. Sastri, Numerical study
of steady laminar fully developed fluid flow and heat
transfer in rectangular and elliptical ducts rotating about a
parallel axis, Int. J. Heat Mass Transfer 39 (4) (1996) 867—
875.

[4] Z.F. Dong, M.A. Ebadian, A numerical analysis of
thermally developing flow in elliptic ducts with internal
fins, Int. J. Heat Fluid Flow 12 (2) (1991) 166-172.

[5] K. Velusamy, V.K. Garg, G. Vaidyanathan, Fully devel-
oped flow and heat transfer in semi-elliptical ducts, Int. J.
Heat Fluid Flow 16 (1995) 145-152.

[6] K. Velusamy, V.K. Garg, Laminar mixed convection in
vertical elliptic ducts, Int J. Heat Mass Transfer 39 (4)
(1996) 745-752.



V.D. Sakalis et al. | International Journal of Heat and Mass Transfer 45 (2002) 25-35 35

[7] E. Saatjian, R. Lam, J.P.B. Mota, Natural convection heat
transfer in the annular region between porous confocal
ellipses, Int. J. Numer. Meth. Fluids 31 (1999) 513-522.

[8] K. Velusamy, V.K. Garg, Entrance flow in elliptical ducts,
Int. J. Numer. Meth. Fluids 17 (1993) 1079-1096.

[9] V.K. Garg, K. Velusamy, Developing flow in an elliptical
duct, Int. J. Eng. Fluid Mech. 2 (2) (1989) 177-196.

[10] V. Javery, Analysis of laminar thermal entrance region of
elliptical and rectangular channels with Kantorowich
method, Warme- und Stoffubertragung 9 (1976) 85-98.

[11] R.M. Abdel-Wahed, A.E. Attia, M.A. Hifni, Experiments
on laminar flow and heat transfer in an elliptical duct, Int.
J. Heat Mass Transfer 27 (12) (1984) 2397-2413.

[12] C.C.M. Rindt, J.J.M. Sillekens, A.A. Van Steenhoven,
The influence of wall temperature on the development of
heat transfer and secondary flow in a coiled heat
exchanger, Int. Commun. Heat Mass Transfer 26 (2)
(1999) 187-198.

[13] J. Schenk, B.S. Han, Heat transfer from laminar flow in
ducts with elliptic cross section, Appl. Sci. Res. 17 (1966)
96-114.

[14] W.M. Kays, M.E. Crawford, Convective Heat and Mass
Transfer, McGraw-Hill, 1993, p. 133 (Chapter 9).

[15] N. Conley, A. Lawal, A.S. Munjumdar, An assessment of
the accuracy of numerical solutions to the Graetz problem,
Int. Commun. Heat Mass Transfer 12 (1985) 219-222.



